
Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/ Evolution Reaction of CoMn₂O₄ Nanodots Supported on Graphene

Jing Du, [†] Chengcheng Chen, [†] Fangyi Cheng, [†] and Jun Chen*, [†], [‡]

[†]Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and [‡]Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

Supporting Information

ABSTRACT: Transition-metal oxides have attracted extensive interest as oxygen-reduction/evolution reaction (ORR/OER) catalyst alternatives to precious Pt-based materials but generally exhibit limited electrocatalytic performance due to their large overpotential and low specific activity. We here report a rapid synthesis of spinel-type CoMn₂O₄ nanodots (NDs, below 3 nm) monodispersed on graphene for highly efficient electrocatalytic ORR/OER in 0.1 M KOH solution. The preparation of the composite involves the reaction of manganese and cobalt salts in mixed surfactant-solvent-water solution at mild temperature (120 °C) and air. CoMn₂O₄ NDs homogeneously distributed on carbonaceous substrates show strong coupling and facile charge transfer. Remarkably, graphene-supported CoMn₂O₄ NDs showed 20 mV higher ORR half-wave potential, twice the kinetic current, and better catalytic durability compared to the benchmark carbon-supported Pt nanoparticles (Pt/C). Moreover, CoMn₂O₄/reduced graphene oxide afforded electrocatalytic OER

with a current density of 10 mA cm⁻² at a low potential of 1.54 V and a small Tafel slope of ~56 mV/dec. This indicates that the composite of CoMn₂O₄ nanodots monodispersed on graphene is promising as highly efficient bifunctional electrocatalysts of ORR and OER that can be used in the areas of fuel cells and rechargeable metal-air batteries.

■ INTRODUCTION

The electrocatalytic oxygen reduction reaction (ORR) is of paramount importance in electrochemical energy storage and conversion technologies such as fuel cells and metal-air batteries. 1-6 Although Pt-based materials have shown the best performance for ORR, the cost and scarcity limit their widespread application. Tremendous interest has been directed to earth-abundant 3d metal (Mn, Fe, Co, Ni) oxides. Among these oxides, spinel oxides have attracted particular interest because of their high ORR activity, excellent stability, and low cost. The general formula of spinel oxide is AB₂O₄, in which A is in a tetrahedral site and B is in an octahedral site. We have reported that Co_xMn_{3-x}O₄ spinel nanoparticles prepared under ambient conditions were used as electrocatalysts for ORR/oxygen evolution reaction (OER).²² However, neat Co_xMn_{3-x}O₄ affords inferior activity due to poor electrical conductivity. This means that the use of a conducting additive such as carbon is necessary. Recent studies have indicated that metal-oxide nanoparticles supported on graphene result in significantly enhanced catalytic activities due to oxide—carbon interaction. ^{13,23,24} As an example, Dai and co-workers have prepared cubic spinel phase MnCo₂O₄ (~5 nm) supported on N-doped reduced graphene by a solvothermal method at 150 °C, showing that the hybrids exhibited high ORR performance.¹³ They also found that increasing the Mn/Co ratio above 1/2 led to decreased ORR catalytic activity. This is because the size was further increased

with higher Mn/Co ratios (10-20 nm for CoMn₂O₄). Note that spinel MnCo₂O₄ crystallizes in a cubic structure, while CoMn₂O₄ crystallizes in a tetragonal structure in which Mn and Co cations occupy different sites. These graphene/metal-oxide hybrid composites exhibit comparable or even higher current density relative to the Pt counterpart, but the onset and halfwave potentials are still lower. Thus, it remains challenging to develop non-noble metal ORR catalysts with both currents and potentials comparable to or even surpassing that of Pt.

It is reported that the activities of nanoparticulated catalysts rely on the composition, shape, size, and structure. 25-28 According to Shao-Horn's design principle, the activity of oxides can be enhanced by tuning surface electronic structure such as transition-metal e_{σ} -filling value and metal-oxygen covalency. 11 Oxides containing mixed transition-metal elements are favorable ORR catalysts as the variable metal valences enable electron hopping with the provision of surface redox centers to bind and activate molecular oxygen. 14,29 Moreover, downsizing metal oxide nanoparticles could be beneficial due to increased surface-atom exposure that contributes to not only catalytic sites but also surface metallicity. 30,31 As an estimation, the surface to total atom ratio of 2 nm oxide particle exceeds 25% (Supporting Information, Figure S1).

Received: March 6, 2015 Published: May 19, 2015

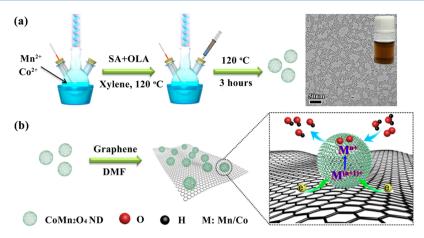


Figure 1. (a) Schematic synthesis of monodispersed $CoMn_2O_4$ NDs. The upper right shows the typical TEM image with the inset of the photo for the obtained colloid. (b) Schematic diagram of ORR on graphene-supported $CoMn_2O_4$ NDs.

Considering all these factors, it is desirable to develop metal—oxide nanoparticles with the combination of ultrasmall size (<3 nm) and multiple-valence composition for ORR/OER electrocatalysts. Herein, we report for the first time the preparation of ultrasmall (1.7–3 nm) and monodispersed CoMn $_2$ O $_4$ NDs with tetragonal spinel phase using a facile and low-temperature reaction (120 °C) in xylene. Loaded on graphene support, the as-prepared mondispersed CoMn $_2$ O $_4$ NDs are cheap yet highly efficient ORR/OER catalysts. This should shed light on the synthesis of monodispersed CoMn $_2$ O $_4$ nanodots (NDs) as well as on their application as highly efficient electrocatalysts for ORR/OER, which are key reactions in fuel cells and rechargeable metal—air batteries.

■ EXPERIMENTAL SECTION

Chemicals and Materials. Manganese(II) acetate, cobalt dichloride, xylene, oleylamine, stearic acid, hexane, dimethylformamide, ethanol, graphite, and Nafion (5%) were purchased from Sigma-Aldrich. Concentrated nitric, hydrochloric, and sulfuric acid, potassium permanganate, and hydrogen peroxide (30%) were provided by Tianjin Guangfu Fine Chemical Research Institute. Carbon-supported Pt nanoparticles (Pt/C, 10 wt % Pt) was supplied by Johnson Matthey.

Reduced Graphene Oxide Synthesis. Graphite oxide (GO) was synthesized according to the modified Staudenmaier method. The Graphite (2.5 g), concentrated sulfuric acid (90 mL), concentrated nitric acid (30 mL), and potassium permanganate (12.5 g) were added to a 1000 mL three-necked round-bottom flask. The resulting solution was stirred for 2 h in an ice bath (0 to ca. –5 °C). Then, the solution was kept at 20 °C and stirred for 120 h. On completion of the reaction, the mixture was added slowly to 500 mL of water and stirred for 2 h. Subsequently, 15 mL of hydrogen peroxide was added, and the resulting precipitates were filtrated, washed with a 3% solution of HCl, and then repeatedly washed with water until the pH of the filtrate was 6. The GO precipitate was freeze-dried for 48 h under vacuum. The reduced graphene oxide (rGO) was prepared by thermal treatment of GO at 1000 °C in a cylindrical electric furnace under a flow of Ar gas for 30 min.

Synthesis of CoMn₂O₄ Nanodots. CoMn₂O₄ nanoparticles were synthesized according to a combined procedure with hot-injection method³³ and "heating up" route. ^{34,35} A solution of 15 mL of xylene, 2.670 g of oleylamine, 0.570 g of stearic acid, 0.115 g of manganese(II) acetate, and 0.043 g of cobalt dichloride in a three-necked flask was heated to 120 °C in air under magnetic stirring and was kept at this temperature for 30 min. Then, 1 mL of deionized water was injected into the solution under a vigorous stirring. The resulting solution was aged at 120 °C for 3 h. A total of 90 mL of ethanol was added to precipitate the nanocrystals, which was followed by centrifugation to retrieve the nanocrystals in powdery form. The as-synthesized NDs

were well-dispersible in hexane. Bulk and 10 nm CoMn_2O_4 NDs were prepared as in our other report. 36

The $CoMn_2O_4$ NDs were assembled on rGO surface as follows: 7 mg of $CoMn_2O_4$ NDs dispersed in 15 mL of hexane was added into 20 mL of dimethylformamide (DMF) solution of graphene (0.5 mg/mL), and the mixture was sonicated for 1 h. Ethanol (8 mL) was added after sonication, and the suspension was centrifuged at 9500 rpm for 10 min to obtain the $CoMn_2O_4/rGO$ sample. $CoMn_2O_4/rGO$ nanocomposites were annealed in air at 170 °C for 12 h to remove the surfactant.

Instrumentation. X-ray diffraction (XRD) patterns were recorded on a Rigaku Mini Flex 600 powder diffractometer (XRD, Rigaku Mini Flex 600 X-ray generator, Cu K α radiation, $\lambda = 1.5406$ Å) at a scanning rate of 1° min⁻¹ from 10 to 80°. Transmission electron microscopy (TEM) and high-resolution TEM specimens were prepared by depositing a drop of diluted NDs dispersion in hexane on copper grids coated with amorphous carbon. TEM imaging was obtained on Philips Tecnai F20 system operated at 200 kV with an energydispersive X-ray spectrometer (EDS). Nitrogen adsorption-desorption events were performed on a BEL-Mini adsorption analyzer. Raman spectra were collected using a confocal Raman microscope (DXR, Thermo-Fisher Scientific) with a 532 nm source from an argon ion laser. Elemental analysis was measured by inductively coupled plasma-atomic emission spectroscopy (ICP-9000, Thermo Jarrell-Ash Corp). Electrochemical measurements were performed with a computer-controlled workstation bipotentiostats (AFCBP1, Pine Instrument). A three-electrode system consisting of a rotation disk electrode (RDE), working electrode (5.61 mm in diameter), a saturated calomel electrode (SCE), and a platinum wire counter electrode was used.

Catalyst Preparation. The as-prepared $CoMn_2O_4/rGO$ (5 mg) was suspended in a mixture of deionized water, ethanol, and Nafion $(v/v/v=4/1/0.7,\,400~\mu L,\,100~\mu L,\,70~\mu L)$ to form a catalyst ink for electrochemistry measurements. Catalyst ink (9.0 $\mu L)$ was deposited on the RDE working electrode and dried at ambient condition. Catalyst loading was $\sim\!0.319$ mg cm $^{-2}$ on the RDE. For comparison, electrocatalytic activity of the benchmark Pt/C was also investigated under the same condition.

Electrochemical Measurements. Polarization curves of ORR were obtained by linear sweep voltammetry scanning from 0.1 to -0.8 V versus SCE at a scan rate of 5 mV/s in O₂-saturated 0.1 M KOH with different rotating rates (400–2025 rpm). Polarization curves of oxygen evolution reaction were obtained by linear sweep voltammetry scanning from 0.1 to 0.85 V versus SCE at a scan rate of 5 mV/s in O₂-saturated 0.1 M KOH with RDE. Electrochemical impedance spectra were measured over a frequency range from 100 kHz to 100 mHz at a direct-current bias potential of 0.83 V at room temperature. Mott—Schottky plots were performed using PARSTAT 4000. Capacity measurements were conducted with 100 Hz frequency, in potential ranging from -1.2 to -0.5 V versus SCE. Chronoamperometry was collected to evaluate the catalyst durability at -0.3 V versus SCE with

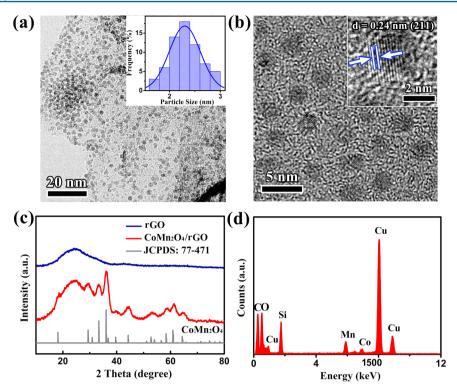


Figure 2. (a) TEM image of CoMn₂O₄/rGO. (inset) Particle size distribution histogram. (b) High-resolution TEM image of CoMn₂O₄ NDs. (c) XRD patterns of rGO, CoMn₂O₄/rGO, and standard CoMn₂O₄. (d) EDS spectrum of CoMn₂O₄/rGO.

the electrode rotating rate of 400 rpm in O_2 -saturated 0.1 M KOH solution.

Reversible Hydrogen Electrode Calibration. In all measurements, an SCE was used as the reference electrode. It was calibrated against and converted to the reversible hydrogen electrode (RHE). The calibration was measured in the high-purity H_2 saturated 0.1 M KOH with a Pt wire as the working electrode. Cyclic voltammetry (CV) was performed at a scan rate of 1 mV s⁻¹, and the average of the two potentials at which the current crossed zero was taken to be the thermodynamic potential for the hydrogen electrode reaction (Supporting Information, Figure S2). In 0.1 M KOH solution, E(RHE) = E(SCE) + 0.991 V.

Calculation Method. The values of turnover frequency (TOF) were calculated by assuming that the surface metal atom is involved in the catalysis. The TOF values are obtained by the following equation:

$$TOF = \frac{i_k \times S}{4 \times e \times N_s} \tag{1}$$

where i_k (mA cm⁻²) is the kinetic current density at 0.85 V, S (0.247 cm²) is the area of electrode, e (1.602 × 10⁻¹⁹ C) is the electron charge, the number four means four electrons per mole of O_2 , and N_s is the number of active surface atoms (here we assume only Mn/Co atoms are active). The surface to total atom ratio of oxide particle is ~25% (Supporting Information, Figure S1).

RESULTS AND DISSCUSSION

Figure 1a illustrates the preparation of monodispersed $CoMn_2O_4$ NDs. Inspired from the classic hot-injection³³ and heating up route^{34,35} to prepare monodispersed NDs, the present synthetic strategy combines two processes that include the injection of water into the hot solution containing Mn/Co precursors, and the formation and growth of nanocrystalline oxides upon heating. This method has been used to prepare manganese oxide nanocrystals with various shapes³⁷ in which oleyamine is not only a surfactant but also a base to increase the pH of the reaction solution and consequently influences the

nucleation process. The manganese acetate and cobalt chloride first reacted with water and generated manganese hydroxide and cobalt hydroxide in the presence of oleylamine.³⁷ Then, CoMn₂O₄ NDs were obtained from decomposition of hydroxide, which mainly contributes to the nucleation. Stearic acid (SA) was used as the cosurfactant along with oleylamine (OLA), preventing agglomeration of the generated nanocrystals. It is reported that other carboxylic acid (e.g., oleic acid) was used as cosurfactant; the size of nanocrystal oxides was more than 6.2 nm. ³⁷ Thus, we used SA as the cosurfactant to prepare ultrasmall CoMn₂O₄ NDs (below 3 nm). This synthesis can be readily scaled up since it involves only inexpensive, nontoxic reagents and proceeds at mild condition (120 °C in air), without the need of organometallic compounds and inert atmospheres. Additionally, the synthetic method was simple and reproducible as verified by TEM (Supporting Information, Figure S3). The monodispersed nanoparticles are ultrasmall (below 3 nm) and well-dispersible in organic solvents (e.g., hexane and DMF) to form a homogeneous colloid solution. Moreover, as schematically illustrated in Figure 1b, $CoMn_2O_4$ NDs can be uniformly distributed on electrically conductive substrates such as graphene. This simultaneously affords abundant surface redox sites and facile electron transfer path for ORR electrocatalysis. A direct self-assembly method was used to deposit monodispersed CoMn₂O₄ NDs on rGO sheet (see the Experimental Section for details and Supporting Information, Figure S4) as reported previously.³⁸ Mixing two immiscible solutions (CoMn₂O₄ in hexane and rGO in DMF) via sonication was an essential step to maintain the desired size and morphology of oxides. The graphene transferred to the upper hexane solution (Figure S4b) and CoMn₂O₄ NDs would be adsorbed on the surface of graphene. For comparison, pure hexane was added into DMF solution of graphene, and the obtained mixture was sonicated for 1 h. The graphene still

dispersed in DMF solution (Figure S4c). Therefore, $CoMn_2O_4$ NDs can be assembled on the graphene surface tightly, which may be due to the absorption effect of functional groups on graphene. The ethanol was added to form a homogeneous solution (Figure S4d), and then $CoMn_2O_4/rGO$ nanocomposites can be obtained by centrifugation.

Figure 2a shows the typical TEM image of the synthesized $CoMn_2O_4$ NDs supported on reduced graphene oxide $(CoMn_2O_4/rGO)$ after heating treatment. Clearly, $CoMn_2O_4$ NDs were dispersed on rGO sheet, with relatively narrow size distribution between 1.7 and 3 nm. From high-resolution TEM imaging (Figure 2b), the observed lattice fringe was consistent with the neighboring distance of $CoMn_2O_4$ (211) planes. Powder X-ray diffraction (XRD) revealed the nanocrystalline nature of the obtained sample (Figure 2c). Despite severe peak broadening due to ultrasmall crystallite size, the reflections could be readily indexed to the tetragonal spinel phase of $CoMn_2O_4$ (JCPDS Card No. 77–471). Energy-dispersive spectroscopy (EDS) analysis indicated that the Mn/Co ratio was \sim 2 in the oxide (Figure 2d).

In addition, both Co/Mn-O vibrations and D/G bands could be detected in the Raman spectra (Figure 3), suggesting

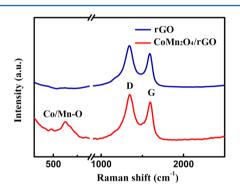


Figure 3. Raman spectra of rGO and CoMn₂O₄/rGO.

the copresence of spinel-type metal oxide and rGO. The mass loading amount of $CoMn_2O_4$ in $CoMn_2O_4/rGO$ was $\sim\!30\%$ analyzed by inductive coupled plasma-atomic emission spectrometer (ICP-AES). Furthermore, nitrogen adsorption/desorption isotherms (at 77 K) of $CoMn_2O_4/rGO$ were measured (Figure 4). The isotherm displays a typical IUPAC type-IV adsorption/desorption behavior, suggesting mesoporous structure. The determined Brunauer–Emmett–Teller (BET) specific surface area of $CoMn_2O_4/rGO$ nanocomposite is 412 m² g $^{-1}$. The corresponding pore size distribution (PSD) of mesopores is centered at 3.7 nm, according to the Barrett–Joyner–Halenda (BJH) method.

X-ray photoelectron spectroscopy (XPS) was employed to investigate the surface chemical state of the synthesized CoMn₂O₄/rGO. The Mn 2p spectra (Figure 5a) could be fitted with two pairs of spin-orbit doublets deconvoluted peaks, which are indicative of Mn2+ and Mn3+ oxidation states.³⁹ The sum peak position of Mn 2p_{3/2} was located at 641.8 eV. Similarly, the Co 2p spectra (Figure 5b) consisted of two pairs of spin-orbit doublets and four shakeup satellites, revealing the coexistence of Co²⁺ and Co³⁺.³⁹ From Gaussian fitting of the peak areas, the Mn(II)/Mn(III) and Co(II)/ Co(III) atomic ratios were 0.13 and 3.81, respectively. These results indicate the presence of multiple valence on the oxide surface with dominant Mn³⁺ and Co²⁺. Additionally, the C 1s spectrum of CoMn₂O₄/rGO showed the presence of abundant oxygen functional groups (Figure 6), which were proposed to increase the interfacial interaction between graphene and metal oxide through a C-O-metal bridge.⁴⁰

The synthesized $CoMn_2O_4/rGO$ was afforded on a rotating glass carbon electrode to investigate the ORR electrocatalytic activity in 0.1 M KOH solution. In comparison, the other four samples of rGO, $CoMn_2O_4$ NDs supported on Vulcan XC-72 carbon ($CoMn_2O_4/VC$, Figure 7), 10 nm $CoMn_2O_4$ nanoparticles (NPs) supported on rGO (10 nm $CoMn_2O_4/rGO$), and commercial Pt/C (10 wt % Pt) were also tested.

Meanwhile, we also studied the mass loading amount of 20 and 40 wt % ultrasmall CoMn₂O₄ in the composites. Supporting Information, Figure S5a shows the Raman spectra for three different loading amounts of CoMn₂O₄. The peak intensity of Co/Mn-O was decreased in the composites as the mass loading amount of oxides decreased. Furthermore, the electrochemical measurement showed that content of 30 wt % CoMn₂O₄ was found to obtain the best performance (Supporting Information, Figure S5b). This is due to a balance of particle density, surface area, and electron conductivity in the composites. Thus, the ORR activities of 30 wt % CoMn₂O₄ sample were detailedly evaluated in our studies. Figure 8a shows the typical linear sweeping voltammograms of different catalysts at the potential scanning rate of 5 mV s⁻¹ and the rotating rate of 400 revolutions per minute (rpm). The cathodic current in O2-saturated electrolyte could be attributed mainly to the electrocatalytic ORR, as viewed from the negligible current response recorded at Ar atmosphere. The capacitive currents were measured and deducted (see Supporting Information, Figure S6). The rGO substrate itself was electrochemically active but showed only low ORR current and potential. Surprisingly, the CoMn₂O₄/rGO nanocomposite exhibited superior catalytic activity to the benchmark Pt/C. The onset potential of CoMn₂O₄/rGO was ~0.95 V, which was similar to previously reported MnCo₂O₄/N-rmGO in 1 M

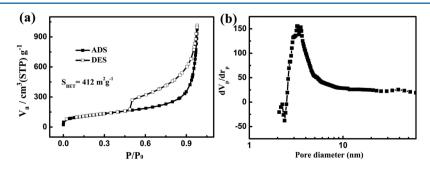


Figure 4. (a) Nitrogen adsorption/desorption isotherms (at 77 K) of CoMn₂O₄/rGO, (b) pore size distribution determined from the BJH method.

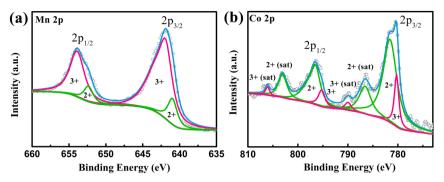
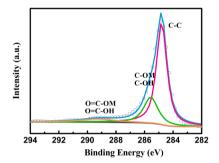



Figure 5. (a) Mn 2p and (b) Co 2p XPS spectra of the synthesized CoMn₂O₄/rGO.

Figure 6. High-resolution XPS spectra of C 1s core levels in the CoMn₂O₄/rGO hybrid.

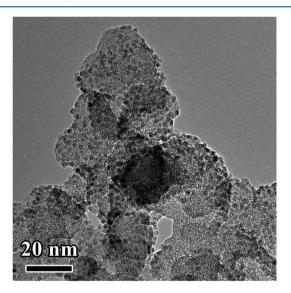


Figure 7. TEM image of CoMn₂O₄ NDs supported on Vulcan XC-72 carbon.

KOH and 30 mV higher in 0.1 M KOH. ¹³ It is reported that in 1 M KOH, the ORR onset potential was more positive and that the current density was smaller than that in 0.1 M KOH. This is due to facilitated oxygen activation, low bulk concentration, and diffusion coefficient of O₂ in 1 M KOH electrolyte. ⁴¹ The half-wave potential of CoMn₂O₄/rGO was 0.89 V, which was 20 mV higher than that of Pt/C and was among the best results reported for nonprecious catalysts (Supporting Information, Table S1). ⁴² Compared to CoMn₂O₄/VC, CoMn₂O₄/rGO delivered a ~50 mV lower overpotential, implying that graphene played an important role in enhancing the ORR performance. Furthermore, the ultrasmall CoMn₂O₄/rGO outperformed 10 nm CoMn₂O₄/rGO and bulk CoMn₂O₄

(Supporting Information, Figure S7), in terms of higher onset potential and limiting current density (based on the geometric area of the electrode). The mass activities (0.85 V) were calculated to be 254.7, 16.5, and 3.34 A $\rm g^{-1}_{metal}$ for 2.3 nm $\rm CoMn_2O_4/rGO$, 10 nm $\rm CoMn_2O_4/rGO$, and bulk $\rm CoMn_2O_4$, respectively. This is apparently attributed to the smaller particle size for providing more active surface atoms.

To understand the unprecedented catalytic ability of the hybrid CoMn₂O₄/rGO, we performed Mott-Schottky analysis and electrochemical impedance spectroscopy (EIS) measurements. Figure 8b displays the Mott-Schottky profiles of rGO, CoMn₂O₄/rGO, and CoMn₂O₄/VC. The plots showed a positive slope, suggesting typical n-type semiconducting behavior. 43,44 The charge carrier concentration $(N_{\rm D})$ can be determined from the slope of the curves (see Supporting Information). ^{43,44} The calculated $N_{\rm D}$ of CoMn₂O₄/rGO (1.18 \times 10²⁴ cm⁻³) was one magnitude that of CoMn₂O₄/VC (1.08 \times 10²³ cm⁻³) and nearly five magnitudes that MnO₂ (Supporting Information, Figure S8).⁴⁵ This result clearly suggests positive attribution of rGO, multiple-valence metals, and ultrasmall oxide particles to the charge transporting ability, which largely dictates the rate-determining step of ORR mediated by redox sites of transition-metal oxides. 1,5,11 In the EIS Nyquist plots (Supporting Information, Figure S9) measured at 0.83 V, CoMn₂O₄/rGO showed a smaller compressed semicircle than that of CoMn₂O₄/VC, indicating a lower charge transfer resistance of the former. The smaller charge transfer resistance was possibly due to the intimate interaction between the rGO substrate and the CoMn₂O₄ NDs, which enhanced electron transfer in electrocatalytic ORR

The ORR kinetics was also evaluated from a set of voltammetry profiles collected on rotational electrodes (Supporting Information, Figure S10). The currents at different rotating speeds were used to construct the Koutecky-Levich (K-L) plots, where the electron number transferred per O₂ molecule (n) and kinetic current (i_k) could be determined from the slope and intercept of the fitted linear line, respectively. 46,47 Both plots (Supporting Information, Figure S11) of CoMn₂O₄/ rGO and Pt/C showed similar slopes and n value close to 4, demonstrating favorable four-electron ORR pathway. The calculated i_k data were applied to construct the Tafel plots (Figure 8c). Having similar Tafel slops, the superior activity of CoMn₂O₄/rGO over Pt/C was further verified from the higher kinetic current at a given potential. The kinetic current of CoMn₂O₄/rGO at 0.90 V was measured to be 3.22 mA/cm², twice that of Pt/C (1.61 mA/cm²). The specific activity and mass activity obtained from the kinetic current attained 3.93 A $\mathrm{m^{-2}}$ and 254.7 A $\mathrm{g^{-1}}_{\mathrm{metal}}$ for $\mathrm{CoMn_2O_4/rGO}$, again surpassing

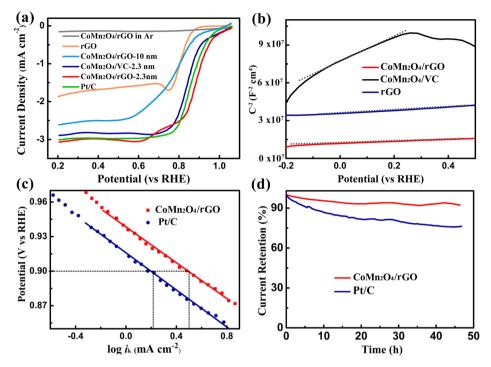


Figure 8. (a) Polarization curves of 10 nm and ultrasmall $CoMn_2O_4/rGO$, rGO, $MnCo_2O_4/VC$, and Pt/C in O_2 -saturated and Ar-saturated 0.1 M KOH at a potential sweep rate of 5 mV/s and at 400 rpm. The capacitive currents were corrected for polarization curves. (b) Mott–Schottky plots of $CoMn_2O_4/rGO$, rGO, and $CoMn_2O_4/VC$. (c) Tafel plots of $CoMn_2O_4/rGO$ and Pt/C derived from the ORR voltammogram. (d) Chronoamperometric profiles of $CoMn_2O_4/rGO$ and Pt/C at 0.7 V in O_2 -saturated 0.1 M KOH.

that of Pt/C. Furthermore, the TOF calculated according to the relation 46 was 0.1 atom $^{-1}$ s $^{-1}$ at 0.85 V for CoMn $_2$ O $_4$ /rGO, comparable to that of the benchmark Pt/C.

In addition to remarkable activity, the synthesized $CoMn_2O_4/rGO$ exhibited respectable catalytic durability, as shown in Figure 8d. At a constant potential of 0.7 V, the ORR current density generated by $CoMn_2O_4/rGO$ sustained more than 92% over 46 h of continuous polarization, while the benchmark Pt/C showed a quick current decay of 24%. Notably, the good dispersibility and ultrasmall particle size of $CoMn_2O_4$ in the composite were well-retained after the extended durability test, as demonstrated by TEM image (Figure 2a and Figure 9). In comparison, there were severe particle detaching and agglomeration for the Pt/C catalyst

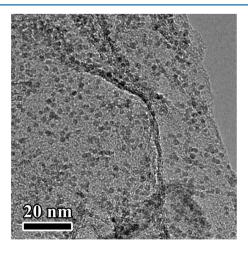


Figure 9. TEM image of CoMn₂O₄/rGO after long-term durability test

(Supporting Information, Figure S12). The superior electrocatalytic stability of $CoMn_2O_4/rGO$ could be partially ascribed to the porous rGO support that firmly anchored the $CoMn_2O_4$ NDs with a uniform distribution.

Lastly, it deserves to be mentioned that the obtained CoMn₂O₄/rGO is also active for electrocatalysis of the oxygen evolution reaction (OER). In alkaline electrolyte, CoMn₂O₄/ rGO gave a considerable low OER onset potential of 1.49 V and afforded a current density of 10 mA cm⁻² at a low potential of 1.54 V (Figure 10a). The polarization curves were corrected for solution resistance, which was performed to be ca. 35 Ω by electrochemical impedance spectrum. Figure 10b shows the Tafel plots of the catalysts. The Tafel slope of CoMn₂O₄/rGO is 56 mV dec⁻¹, which is much smaller than that of rGO (156 mV dec⁻¹) and Pt/C (280 mV dec⁻¹), indicating high OER activity for CoMn₂O₄/rGO. As previously proposed, the OER potential at the current density of 10 mA cm⁻² is a figure of merit related to solar fuel synthesis.⁴⁸ Here we choose the potential separation between ORR (at the current of 1 mA cm⁻²) and OER (at 10 mA cm⁻²) as a metric to evaluate the performance of bifunctional oxygen electrocatalysts. The value was ~0.65 V for CoMn₂O₄/rGO, which is lower than that of recently reported representative oxygen electrodes such as Co_xO_y/N-doped carbon (0.86 V)⁴⁸ and CoO/N-doped graphene (0.76 V).49 This result indicates that CoMn₂O₄/ rGO is among the most active bifunctional ORR/OER catalysts reported to date. ^{12,17,49,50} The exciting catalytic performance of CoMn₂O₄/rGO can be attributed to several factors. First, the CoMn₂O₄ surface occurs with Mn(II)/Mn(III) and Co(II)/ Co(III) multivalent states that mediate the redox reaction concurrent with the oxygen reduction. XPS analysis reveals dominantly enriched surface Mn(III), which has been proposed as active species for oxygen electrocatalysis. 12,42,51 Second, the utrasmall size (typically 2.3 nm) of CoMn₂O₄ dots exposes

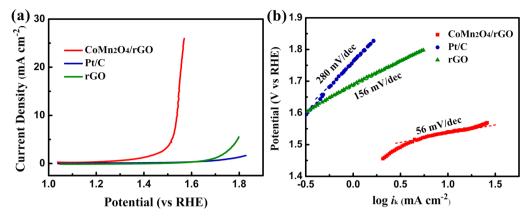


Figure 10. (a) Oxygen evolution currents of $CoMn_2O_4/rGO$, rGO, and Pt/C electrodes in 0.1 M KOH electrolyte at a potential scan rate of 10 mV/s. (b) Tafel plots of $CoMn_2O_4/rGO$, rGO, and Pt/C.

significantly high proportion of surface atoms to bind and activate oxygen molecules. Third, the rGO substrate strongly coupling metal oxide favors high concentration of charge carrier and facile electron conduction (Figure 8b). Additional benefits include porous structure, high specific surface area, and high particle dispersion, which is advantageous for heterogeneous catalysis.

CONCLUSION

In conclusion, we developed a facile route to synthesize CoMn₂O₄ NDs (below 3 nm) that are monodispersed on graphene using low-cost raw materials at mild temperature of 120 °C and ambient atmosphere. We demonstrated that the composite of graphene-supported CoMn₂O₄ NDs was highly active toward ORR in alkaline solution, exhibiting a ~20 mV more positive half-wave potential, a higher kinetic current density, and a much better catalytic durability compared to Pt/ C. Furthermore, CoMn₂O₄/rGO exhibited exceptional OER activity with a low potential of 1.54 V at the current density of 10 mÅ cm⁻² and a small Tafel slope of 56 mV/dec. Therefore, the composite of graphene-supported CoMn₂O₄ NDs showed a promising bifunctional electrocatalytic ORR/OER with considerably low overpotential due to the strong carbon-metal oxide interaction. This study indicates great potential to attain Pt-like electrocatalytic activity for nonprecious 3d metal oxides by downsizing into NDs (below 3 nm) and anchoring oxide colloids on graphene-based support.

ASSOCIATED CONTENT

S Supporting Information

Crystal structure, cyclic voltammograms, TEM images, photos, Raman spectra, polarization curves, Mott–Schottky plots, electrochemical impedance spectra, and Koutecky–Levich (K–L) plots. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.5b00518.

AUTHOR INFORMATION

Corresponding Author

*Phone/Fax: +86-22-23506808. E-mail: chenabc@nankai.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Programs of 973 (2011CB935900), NSFC (21231005 and 21322101), and MOE (B12015 and ACET-13-0296).

REFERENCES

- (1) Kinoshita, K. Electrochemical Oxygen Technology; Wiley: New York, 1992.
- (2) Desmond Ng, J. W.; Gorlin, Y.; Hatsukade, T.; Jaramillo, T. F. Adv. Energy Mater. 2013, 3, 1545.
- (3) Bing, Y. H.; Liu, H. S.; Zhang, L.; Ghosh, D.; Zhang, J. J. Chem. Soc. Rev. 2010, 39, 2184.
- (4) Cao, R.; Lee, J. S.; Liu, M.; Cho, J. Adv. Energy Mater. 2012, 2, 816.
- (5) Black, R.; Oh, S. H.; Lee, J. H.; Yim, T.; Adams, B.; Nazar, L. F. J. Am. Chem. Soc. **2012**, 134, 2902.
- (6) Cheng, F.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172.
- (7) Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R. Science 2014, 342, 1339.
- (8) Alia, S. M.; Pylypenko, S.; Neyerlin, K. C.; Cullen, D. A.; Kocha, S. S.; Pivovar, B. S. *ACS Catal.* **2014**, *4*, 2680.
- (9) Wu, J.; Yang, H. Acc. Chem. Res. 2013, 46, 1848.
- (10) Chen, S.; Wei, Z.; Qi, X.; Dong, L.; Guo, Y.; Wan, L.; Shao, Z.; Li, L. J. Am. Chem. Soc. 2012, 134, 13252.
- (11) Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Nat. Chem. 2011, 3, 546.
- (12) Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. *J. Am. Chem. Soc.* **2013**, *135*, 8525.
- (13) Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. J. Am. Chem. Soc. **2012**, 134, 3517.
- (14) Zhu, H.; Zhang, S.; Huang, Y.; Wu, L.; Sun, S. Nano Lett. 2013, 13, 2947.
- (15) Cao, B. F.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Inorg. Chem. 2015, 54, 2128.
- (16) Zaharieva, I.; Najafpour, M. M.; Wiechen, M.; Haumann, M.; Kurz, P.; Dau, H. Energy Environ. Sci. 2011, 4, 2400.
- (17) Ma, T.; Dai, S.; Jaroniec, M.; Qiao, S. J. Am. Chem. Soc. 2014, 136, 13925.
- (18) Hardin, W. G.; Slanac, D. A.; Wang, X. Q.; Dai, S.; Johnston, K. P.; Stevenson, K. J. *J. Phys. Chem. Lett.* **2013**, *4*, 1254.
- (19) EI-Deab, M. S.; Ohsaka, T. Angew. Chem., Int. Ed. 2006, 45, 5963.
- (20) Zhang, K.; Han, X. P.; Hu, Z.; Zhang, X. L.; Tao, Z. L.; Chen, J. Chem. Soc. Rev. 2015, 44, 699.
- (21) Kim, J.; Yin, X.; Tsao, K. C.; Fang, S.; Yang, H. J. Am. Chem. Soc. **2014**, 136, 14646.

(22) Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Nat. Chem. 2011, 3, 79.

- (23) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Nat. Mater. 2011, 10, 780.
- (24) Guo, S.; Zhang, S.; Wu, L.; Sun, S. Angew. Chem., Int. Ed. 2012, 51, 11770.
- (25) Proch, S.; Wirth, M.; White, H. S.; Anderson, S. L. J. Am. Chem. Soc. 2013, 135, 3073.
- (26) Xia, Y.; Yang, H.; Campbell, C. T. Acc. Chem. Res. 2013, 46, 1671.
- (27) Guo, S.; Zhang, S.; Sun, S. Angew. Chem., Int. Ed. 2013, 52, 8256.
- (28) Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. I. Am. Chem. Soc. **2014**, 136, 11452.
- (29) Rios, E.; Gautier, J. L.; Poillerat, G.; Chartier, P. Electrochim. Acta 1998, 44, 1491.
- (30) Tompsett, D. A.; Islam, M. S. J. Phys. Chem. C 2014, 118, 25009.
- (31) Tompsett, D. A.; Parker, S. C.; Islam, M. S. J. Am. Chem. Soc. **2014**, 136, 1418.
- (32) McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R. P.; Aksay, I. A. R. Chem. Mater. 2007, 19, 4396.
- (33) Murray, C. M.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
- (34) Park, J.; An, K. J.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Nat. Mater. 2004, 3, 891.
- (35) Kwon, S. G.; Piao, Y.; Park, J.; Angappane, S.; Jo, Y.; Hwang, N. M.; Park, J. G.; Hyeon, T. *J. Am. Chem. Soc.* **2007**, *129*, 12571.
- (36) Du, J.; Zhang, T. R.; Cheng, F. Y.; Chu, W. S.; Wu, Z. Y.; Chen, J. Inorg. Chem. **2014**, 53, 9106.
- (37) Yu, T.; Moon, J.; Park, J.; Park, Y. I.; Na, H. B.; Kim, B. H.; Song, I. C.; Moon, W. K.; Hyeon, T. Chem. Mater. 2009, 21, 2272.
- (38) Guo, S. J.; Sun, S. H. J. Am. Chem. Soc. 2012, 134, 2492.
- (39) Yu, L.; Zhang, L.; Wu, H. B.; Zhang, G. Q.; Lou, X. W. Energy Environ. Sci. 2013, 6, 2664.
- (40) Zhou, G.; Wang, D. W.; Yin, L. C.; Li, N.; Li, F.; Cheng, H. M. ACS Nano 2012, 6, 3214.
- (41) Blizanac, B. B.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2007, 52, 2264.
- (42) Risch, M.; Stoerzinger, K. A.; Maruyama, S.; Hong, W. T.; Takeuchi, I.; Shao-Horn, Y. J. Am. Chem. Soc. 2014, 136, 5229.
- (43) Gao, E. P.; Wang, W. Z.; Shang, M.; Xu, J. H. Phys. Chem. Chem. Phys. **2011**, 13, 2887.
- (44) Das, J. N. Z. Phys. 1958, 151, 345.
- (45) L'Hostis, V.; Dagbert, C.; Féron, D. Electrochim. Acta 2003, 48, 1451.
- (46) Lima, F. H. B.; Calegaro, M. L.; Ticianelli, E. A. J. Electroanal. Chem. 2006, 590, 152.
- (47) Paulus, U. A.; Wokaun, A.; Scherer, G. G. J. Phys. Chem. B 2002, 106, 4181.
- (48) Masa, J.; Xia, W.; Sinev, I.; Zhao, A.; Sun, Z.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. Angew. Chem., Int. Ed. 2014, 53, 8508.
- (49) Mao, S.; Wen, Z.; Huang, T.; Hou, Y.; Chen, J. Energy Environ. Sci. 2014, 7, 609.
- (50) Trotochaud, L.; Samantha, L.; Ranney, J. K.; Boettcher, S. W. J. Am. Chem. Soc. **2014**, 136, 6744.
- (51) Takashima, T.; Hashimoto, K.; Nakamura, R. J. Am. Chem. Soc. 2012, 134, 1519.